Highly-efficient thermoelectronic conversion of solar energy and heat into electric power

Highly-efficient thermoelectronic conversion of solar energy and heat into electric power

Electric power may, in principle, be generated in a highly efficient manner from heat created by focused solar irradiation, chemical combustion, or nuclear decay by means of thermionic energy conversion. As the conversion efficiency of the thermionic process tends to be degraded by electron space charges, the efficiencies of thermionic generators have amounted to only a fraction of those fundamentally possible. We show that this space-charge problem can be resolved by shaping the electric potential distribution of the converter such that the static electron space-charge clouds are transformed into an output current. Although the technical development of such thermoelectronic generators will require further substantial efforts, we conclude that a highly efficient transformation of heat to electric power may well be achieved.

© 2013 Author(s)

Advertisements
Link